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Abstract

Several types of in~atable dams are considered[ These are long\ air!in~ated\ cylindrical structures on a
rigid foundation[ Sometimes one of the long edges of a sheet is folded back to the other edge\ and then the
two edges are clamped to the foundation along a single anchoring line[ A second con_guration can be
modeled as two sheets attached along two long edges\ with one edge anchored and the other free to lift as
air pressure is applied between the sheets[ Another device treated here is a hinged spillway gate lifted by an
in~atable bladder[ The cross section of the dam or bladder is analyzed as an inextensible elastica[ The
governing equations and boundary conditions are formulated for each case\ and shooting methods are
utilized to obtain numerical solutions for the equilibrium shapes[ The e}ects of the internal air pressure and
the external water height are investigated[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

In~atable dams are sometimes described as sausage!like tubes[ They are cylindrical in shape and
are usually attached to a concrete foundation and then in~ated with air "Tam\ 0886#[ They are
made of a nylon!reinforced polymer and their height ranges from 2 to 5 m\ while their length may
reach 019 m[ Approximately 1999 in~atable dams have been constructed\ mostly in Japan[ There
are many uses for in~atable dams\ such as creating recreational basins\ preventing contamination\
increasing groundwater supply\ raising the height of existing dams to increase reservoir capacity\
and diverting water for irrigation\ hydroelectricity\ tidal control\ or ~ood control[

In~atable dams were invented 39 years ago[ They often had a double!anchor system\ in which
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Fig[ 0[ Geometry of folded dam with no external water[

they were attached to the foundation along two of their generators[ Previous studies of the behavior
of in~atable dams considered such a support system "see Hsieh and Plaut\ 0889 ^ Dakshina Moorthy
et al[\ 0884 ^ Wu and Plaut\ 0885 ^ and their reference lists#[ Recently\ these dams have been attached
along a single anchor line[ The cross section of one type of single!anchor con_guration is depicted
in Fig[ 0[ The purpose of the present investigation is to determine the equilibrium shapes of such
dams[ The forces acting on the dam include the internal air pressure and the external water
pressure[ The weight of the dam itself is assumed to be negligible compared to these pressures\ and
friction with the foundation is also neglected[

Two types of in~atable dams are studied here[ In the _rst\ analyzed in Section 1\ the material is
unstrained when it is horizontal\ and one end is lifted\ folded back\ and clamped to the other end
and the foundation "point C in Fig[ 0#[ This problem is related to the folding of ~exible strips or
sheets[ Stuart "0855# studied a free!standing fold "or loop# of a ~exible material\ such as fabric or
paper\ resting on a horizontal foundation\ in order to determine a {{bending length||[ The strip was
modeled as an inextensible elastica\ and its folded equilibrium shape depended on its ~exural
rigidity and weight per unit length[ Wang "0873# considered lifting a ~exible elastic strip and
folding it back to form a loop[ The last stage of the process is the problem that was treated by
Stuart "0885#[

Lloyd et al[ "0867#\ Lloyd "0873#\ and Mahadevan and Keller "0884# considered a ~exible sheet
that was lowered vertically onto a horizontal surface and formed folds in alternating directions[
Again\ the last stage of forming of the _rst fold corresponds to the same free!standing con_guration
analyzed by Stuart "0855#[ A related problem was studied by Wang "0870\ 0876#\ in which the
weight was neglected and the folded material was held down by a clamp\ as in Fig[ 0[

In the second type of dam to be treated "Section 2#\ a thick sheet of material is again unstrained
when it is ~at[ It is slit into two sheets except near one edge[ The opposite edge is clamped\ and
pressure is applied between the two sheets[ The edge that was not slit acts as a _n\ which is useful
in cases of over~ow "Mysore et al[\ 0886 ^ Plaut et al[\ 0887#[

In addition\ a type of spillway gate raised by an in~atable bladder is examined "Sehgal\ 0885 ^
Plaut et al[\ 0887#[ The bladder may be folded back or may have a _n\ as described above[ For the
dams and the gates\ the cross section is assumed to behave as an inextensible elastica\ as was done
in the references just listed for folded strips[ The equilibrium shapes are determined numerically
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using shooting methods\ and the e}ects of the internal pressure and external water height are
determined[

1[ Folded dam

1[0[ Without external water

A portion of the dam with unit width along the generators is considered[ The cross section
illustrated in Fig[ 0 is treated _rst\ with no water present[ Both the top and bottom portions of the
structure are clamped at C\ and the straight section from C to B rests on a rigid horizontal
foundation[ The horizontal coordinate\ X\ vertical coordinate Y\ and arc length S are measured
from B\ and u"S# is the angle of the tangent with the horizontal[ The dam is uniform and
inextensible[ The perimeter of the cross section is L and the dam has ~exural rigidity
D � Eh2:ð01"0−n1#Ł\ where E is the modulus of elasticity\ h is the thickness of the material\ and n

is Poisson|s ratio[ The internal pressure is P and the unknown height of the dam is Hd[
A free body diagram of an element of the cross section from S to S¦dS is depicted in Fig[ 1[

The horizontal and vertical forces per unit width are F and G\ respectively\ and the bending
moment per unit width is M[ From geometry and the assumed moment!curvature relation for an
elastica\

dX
dS

� cos u\
dY
dS

� sin u\
du

dS
�

M
D

\ "0a\b\c#

and from equilibrium of the element in Fig[ 1\

dF
dS

� −P sin u\
dG
dS

� −P cos u\
dM
dS

� F sin u¦G cos u[ "1a\b\c#

It is assumed that the perimeter L and ~exural rigidity D are known[ The following non!
dimensional quantities are de_ned with respect to these quantities ]

Fig[ 1[ Element of elastica with horizontal and vertical force components[
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x � X:L\ y � Y:L\ s � S:L\ hd � Hd:L\

p � L2P:D\ f � L1F:D\ ` � L1G:D\ m � LM:D[ "2#

For the free!standing fold studies previously cited\ the {{bending length|| "D:w#0:2 is used for
nondimensionalization instead of L\ where w is the weight per unit area[ For a narrow strip\ D in
this expression is replaced by EI\ where I is the moment of inertia\ and w is replaced by the weight
per unit length[

In _rst!order form\ the nondimensional system of equations to be solved is obtained from "0#Ð
"2# and is given by

dx
ds

� cos u\
dy
ds

� sin u\
du

ds
� m\

df
ds

� −p sin u\
d`
ds

� −p cos u\
dm
ds

� f sin u¦` cos u[ "3aÐf#

At s � 9 "point B in Fig[ 0#\ x � y � u � m � 9\ and at s � sC "the positive arc length at point C#\
x"sC# � sC−0\ y"sC# � 9\ u"sC# � p[ Let z �" f"9#\ `"9#\ sC#\ and x"s ^ z#\ y"s ^ z#\ etc[ denote the
solution to "3aÐf# with the given initial conditions at s � 9[ The problem then is to solve the
nonlinear system of equations

J"z# �"x"sC ^ z#−sC¦0\ y"sC ^ z#\ u"sC ^ z#−p# � 9

for z[ J"z# � 9 was solved by a combination of quasi!Newton methods "More� et al[\ 0879# and
globally convergent homotopy methods "Watson et al[\ 0887#\ based on simple shooting and the
adjoint equations for "3aÐf#[ Details of the adjoint equations\ and of the tandem use of quasi!
Newton and homotopy methods\ are in Watson "0889# for similar elastica problems[

Equilibrium shapes of the folded dam without external water are presented in Fig[ 2 for

Fig[ 2[ Equilibrium shapes of folded dam with no external water[
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Fig[ 3[ In~uence of internal pressure on height of dam with no external water[

nondimensional internal pressures p � 0999\ 1999\ and 2999[ Naturally\ the contact length of the
elastica with the foundation decreases as p increases[ The nondimensional dam height hd is plotted
as a function of p in Fig[ 3[ When the internal pressure is zero\ the similarity solution given by
Wang "0870\ 0876# is applicable\ from which hd � 9[193\ sC � 9[685\ f"9# � 08[8\ and `"9# � 32[6[

1[1[ With external water

Now consider the folded dam with external water of height Hw and speci_c weight G on the
upstream side\ as depicted in Fig[ 4[ In this case the origin of the coordinate system is placed at
point A\ located on the dam at the water surface\ since the governing equations are di}erent over
segments CA and AB[ Also\ instead of using F and G\ the tension per unit width T and shear force

Fig[ 4[ Geometry of folded dam with external water[
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Fig[ 5[ Element of elastica with tangential and normal force components[

per unit width V are utilized\ as de_ned in the free body diagram of an element in Fig[ 5[ Equilibrium
provides the relations

dM
dS

� V\
dT
dS

� −V
du

dS
\

dV
dS

� T
du

dS
¦P[ "4a\b\c#

With the use of "0c# and "4a#\ one can integrate "4b# and obtain

T � T9−
0
1

M1

D
\ "5#

where T9 is a constant[
The nondimensional quantities in "2# are used\ along with

v � L1V:D\ t � L1T:D\ t9 � L1T9:D\ hw � Hw:L\ g � L3G:D[ "6#

The governing equations from A "where s � 9# to B "where s � sB × 9# in Fig[ 4 are given by "3aÐ
c# and

dm
ds

� v\
dv
ds

� t9m−
0
1

m2¦p[ "7a\b#

From C "where s � sC ³ 9# to A\ the equations are the same except that p is replaced by p¦gy
"where y ³ 9# in "7b#[ At s � 9\ one has x � y � 9[ The unknowns for this case are

z �"u"9#\ m"9#\ v"9#\ t9\ sB\ sC#\

and the nonlinear system to be solved for z is



L[ T[ Watson et al[ : International Journal of Solids and Structures 25 "0888# 0272Ð0287 0278

Fig[ 6[ In~uence of external water on equilibrium shape of folded dam for g � 29\999 and p � 2999[
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F

G

G

G

G

G

G
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f
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j

� 9\

where the last component of J re~ects the nondimensional perimeter of 0[
There are numerous equivalent mathematical formulations for the folded dam with external

water\ most of which are ill posed for shooting[ The choice of T and V instead of F and G\ and the
choice of point A as the shooting origin\ were speci_cally made to obtain a well conditioned
system J"z# � 9[ As above\ a combination of quasi!Newton methods "subroutine HYBRJ from
MINPACK "More� et al[\ 0879## and homotopy methods "subroutine FIXPNF from HOM!
PACK89 "Watson et al[\ 0887## was used to solve J"z# � 9[ It is worth mentioning that\ despite
the advantages of collocation over shooting\ a quintic spline collocation formulation "Watson\
0889# of "3aÐf# and "3aÐc#Ð"7a\b# was not successful "neither problem is a standard second
order boundary value problem#[ Both quasi!Newton and homotopy methods failed on the spline
collocation formulation[ Multiple shooting was not tried at all\ because generally it is even less
robust than collocation[

Equilibrium shapes are plotted in Fig[ 6 for nondimensional speci_c weight g � 29\999\ internal
pressure p � 2999\ and water heights hw � 9[0\ 9[014\ 9[04\ 9[064\ and 9[1[ Values of t9\ the
nondimensional tension per unit width at the lift!o} point B\ vary from 339 for hw � 9[0 to 283
for hw � 9[1[ The case of no external water is given by the solid shape in Fig[ 2[ The water tends
to push the dam to the right in Fig[ 6\ to increase the contact length with the foundation\ and to
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Fig[ 7[ In~uence of external water height on height of folded dam for g � 29\999 and p � 2999[

Fig[ 8[ Geometry of dam with _n[

decrease the height hd of the dam[ The variation of hd with the water height hw is presented in Fig[
7 for the same values of g and p as used in Fig[ 6[

2[ Dam with _n

2[0[ Without external water

The pressurized cross section of this type of dam is sketched in Fig[ 8\ in the absence of external
water[ The _n at D is at the midpoint of the perimeter from the clamped end C\ and the origin is
taken at the lift!o} point B[ Equations "3aÐc# and "7a\b# govern on segment BD "9 ³ s ³ sD#
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Fig[ 09[ Comparison of equilibrium shapes of dam with _n using linear analysis "solid# and elastica analysis "dashed#[

except that p is replaced by −p in "7b#[ For segment DC "sD ³ s ³ sC#\ u\ t\ v\ and m are de_ned
so that they are continuous at D[ This causes changes in the governing equations\ which become

dx
ds

� −cos u\
dy
ds

� −sin u\
du

ds
� m\

dm
ds

� −v\
dv
ds

� p¦"t9−m1
D#m¦

0
1

m2\ "8aÐe#

where mD is the value of the nondimensional bending moment m at the _n[ At B\
x � y � u � m � 9\ and at C\ y � u � 9 along with the length condition x"sC# � sC−0[ The
unknowns are z �"v"9#\ t9\ sC# and the nonlinear system is

J"z# �"y"sC ^ z#\ u"sC ^ z#\ x"sC ^ z#−sC¦0# � 9[

The adjoint equations for "3aÐc#\ "7a\b#\ "8aÐe# do not exist because of the singularity at the _n[
Nevertheless\ _nite di}erence approximations to the Jacobian matrix of J"z# were adequate for
the quasi!Newton code HYBRD from MINPACK "More� et al[\ 0879# to work[ This particular
formulation was also well conditioned[

The dashed curves in Fig[ 09 show the equilibrium shapes for small values of internal pressure
p\ while Fig[ 00 depicts shapes at higher values of p[ The solid curves in Fig[ 09 correspond to
solutions obtained from a linear analysis\ assuming small slopes and EulerÐBernoulli beam theory[
It leads to the following nondimensional displacements y0"x# and y1"z# for the lower and upper
uplifted segments\ respectively\ where z is the horizontal axis with origin at C "z � x¦9[020# ]

y0"x# � 9[9113px2− 0
13

px3\ 9 ³ x ³ 9[258\ "09a#

y1"z# � 9[9020pz1−9[9331pz2¦ 0
13

pz3\ 9 ³ z ³ 9[4[ "09b#

The linear solution is fairly accurate for the case p � 49\ and also close to the nonlinear solution
near the clamped end for the other cases in Fig[ 09 "note that the horizontal and vertical scales are
not the same in this _gure#[

The variation of the nondimensional height hd of the dam with the internal pressure p is plotted
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Fig[ 00[ Equilibrium shapes of dam with _n and no external water[

Fig[ 01[ In~uence of internal pressure on height of dam with _n and no external water[

in Fig[ 01[ For the range shown\ hd corresponds to a point between C and D in Fig[ 8\ and not to
the height of the _n[ Here hd � 9 when p � 9\ unlike the case of the folded dam[ The tension
parameter t9 is equal to 090\ 137\ and 285 for p � 0999\ 1999\ and 2999\ respectively[

2[1[ With external water

Next\ external water is applied to the dam in Fig[ 8\ in the manner shown in Fig[ 4[ The
coordinate system is chosen as in Fig[ 4\ with the _n at point D as in Fig[ 8[ The governing
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Fig[ 02[ In~uence of external water on equilibrium shape of dam with _n for g � 29\999 and p � 2999[

equations for segments CA and AD are the same as described in Section 1[1[ For segment DB\ the
equations are "8aÐe# except that p is replaced by −p in "8e#[

The unknowns here are z �"u"9#\ m"9#\ v"9#\ t9\ sB\ sC# and the nonlinear system to be solved is

J"z# �

F

G

G

G

G

G

G

G

G

f

y"sb ^ z#¦hw

u"sB ^ z#

m"sB ^ z#

y"sC ^ z#¦hw

u"sC ^ z#

x"sB ^ z#−x"sC ^ z#¦sB−sC−0

J

G

G

G

G

G

G

G

G

j

� 9\

where sD � 9[4¦sC "since sC ³ 9#[ The same numerical algorithm as described in Section 2[0 is
used here[

Some equilibrium shapes are shown in Fig[ 02[ As in Fig[ 6\ g � 29\999 and p � 2999[ The water
heights in Fig[ 02 are hw � 9[03\ 9[04\ 9[05\ 9[06\ and 9[07[ The tension parameter t9 decreases from
270 to 237 as hw increases from 9[03 to 9[07[ Figure 03 demonstrates how the height of the dam
decreases as the external water height increases[

3[ Spillway gate without _n

In this section and the following one\ an in~ated bladder lifts a ~at\ rigid plate which holds back
water[ The geometry shown in Fig[ 04 is considered _rst[ The formulation is similar to that in
Section 1[ The elastica is attached at C to a rigid\ horizontal foundation\ and the other end is lifted\
folded back\ and again connected at C\ but allowed to have a slope there[ Internal pressure P is
applied[ A plate\ pinned at C\ rests on the bladder and impounds water[ The plate has length Lp

and weight per unit are a Wp[
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Fig[ 03[ In~uence of external water height on height of dam with _n for g � 29\999 and p � 2999[

Fig[ 04[ Geometry of spillway gate without _n[

From A to B in Fig[ 04\ the governing equations are "3aÐf# except that p is replaced by −p[ For
simpli_cation in this case\ "3a\b# are used in "3d\e# and the resulting equations are integrated to
give

f � fA¦py\ ` � `A¦px[ "00a\b#

Then the equations to be used are

dx
ds

� cos u\
dy
ds

� sin u\
du

ds
� m\

dm
ds

�" fA¦py# sin u¦"`A¦px# cos u[ "01aÐd#

At A "s � 9#\ x � y � m � 9[
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Fig[ 05[ Equilibrium shapes of spillway gate without _n for r � 9 and u � 204[

The unknowns are z �"u"9#\ fA\ `A\ sB#\ and the equations to be satis_ed are

u"sB ^ z#¦p � 9\ m"sB ^ z# � 9\ "02a\b#

"x"sB ^ z#¦sB−0# sin"u"9##−"0¦cos"u"9###y"sB ^ z# � 9\ "02c#

r sin"u"9##¦2u sin1"u"9## cos"u"9##−2p"y"sB ^ z##1

−5" fA sin"u"9##¦`A cos"u"9###y"sB ^ z# sin"u"9## � 9\ "02d#

where

r � LGH2
w:D\ u � LL1

pWp:D[ "03a\b#

Equation "02c# comes from multiplying sin"u"9## times the condition that the perimeter is unity\
whereas "02d# is a result of multiplying 5 sin1"u"9## times moment equilibrium about C of a free
body diagram of the plate[ The equations "02aÐd# were solved by a combination of homotopy and
quasi!Newton methods\ as described earlier in Section 1[

First\ external water is not included "r � 9#[ For the case u � 204\ results are presented in Figs
05 and 06[ Equilibrium shapes are depicted in Fig[ 05 for four values of internal pressure\ including
zero "when only the bending sti}ness of the bladder holds up the plate#[ Vertical dashes indicate
point A where the bladder loses contact with the plate[ The nondimensional tension tA per unit
width at A "and also tB at B# is 25[7\ 73[0\ 080\ and 286 for p � 9\ 0999\ 1999\ and 2999\ respectively[
The angle u"9# of the plate with the horizontal is plotted as a function of p in Fig[ 06\ along with
the length sB of the elastica from A to B in Fig[ 04 and its height hd[

Next\ with u � 204 and p � 2999\ external water is applied to the plate[ Figure 07 shows
equilibrium shapes of the bladder for r � 9 "also the solid shape in Fig[ 05#\ 14\ 49\ and 64[ The
corresponding values of tA "and tB# are 286\ 256\ 238\ and 222[ As expected\ the plate is pushed
downward and the contact lengths of the elastica with the plate and the foundation increase as the
height of the water is increased[
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Fig[ 06[ In~uence of internal pressure on plate angle\ curved length of elastica\ and height of elastica[

Fig[ 07[ In~uence of external water on equilibrium shape of spillway gate without _n for u � 204 and p � 2999[

4[ Spillway gate with _n

Finally\ the bladder is modeled as in Section 2[ The geometry is similar to that in Fig[ 04 except
that there is a _n at D\ as in Fig[ 8[ The lengths of the upper and lower portions of the elastica
from C to D are L:1 dimensionally\ as before[

Two coordinate systems are used[ In nondimensional terms\ one of them involves s�\ x�\ y�\
and u�\ with its origin at the lift!o} point B as in Fig[ 0[ The other has its origin at point A in Fig[
04\ where the elastica separates from the rigid plate\ and involves s\ x\ y\ and u[ Equations "01aÐd#
govern from A to the _n at D[ From B to D\ the governing equations involve quantities with an
asterisk and are the same as "01aÐd# except that p is replaced by −p\ fA by f �B\ and `A by `�B[ At
s � 9 "point A#\ x � y � m � 9\ whereas at s� � 9 "point B#\ x� � y� � u� � m� � 9[
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Fig[ 08[ In~uence of external water on equilibrium shape of spillway gate with _n for u � 19 and p � 2999[

The unknowns are z �"u"9#\ fA\ `A\ f�B\ `�B\ sD\ s�D#[ If the contact length from C to B on the
foundation is denoted b and the contact length from C to A along the plate is denoted a\ then

b � 9[4−s�D\ a � 9[4−sD[ "04a\b#

The equations to be satis_ed are "02d# with y"sB ^ z# replaced by a sin u"9#\ and

b¦x"s�D ^ z# � a cos"u"9##¦x"sD ^ z#\ y"s�D ^ z# � a sin"u"9##¦y"sD ^ z#\

u"s�D ^ z# � u"sD ^ z#\ m"s�D ^ z# � −m"sD ^ z#\ f�B−py"s�D ^ z#¦fA¦py"sD ^ z# � 9\

`�B−px"s�D ^ z#¦`A¦px"sD ^ z# � 9\ "05aÐf#

which involve continuity and equilibrium conditions[ The numerical solution procedure is similar
to that for the dam with _n in Section 2[1[

Figure 08 illustrates equilibrium shapes for u � 19\ p � 2999\ and the four values of r used in
Fig[ 07[ Horizontal dashes on the curves indicate point A[ The values of tA "and tB# are −76[5
"compression#\ 00[2\ 53[9\ and 87[8 for r � 9\ 14\ 49\ and 64\ respectively[ The contact lengths
increase as the height of the external water increases " for a given plate and a given internal
pressure#[

5[ Concluding remarks

Most earlier studies of in~atable dams considered anchoring along two generators of the
cylindrical structure\ since this was the common mode of construction[ At present\ these dams are
usually anchored along a single generator[ The shapes of the cross sections of such dams have been
examined in this study[

The cross section is modeled as an inextensible elastica[ The analysis is challenging because the
governing di}erential equations are highly nonlinear\ and because the contact length along the
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rigid foundation is unknown[ For the spillway gate\ the contact length of the rigid gate with the
elastica is an additional unknown[ Also\ the problem is often very sensitive to the choices of the
unknown parameters and unknown {{initial conditions|| at the origin of the coordinate system[
Simple shooting and even quintic spline collocation did not always succeed\ and more involved
techniques such as globally convergent homotopy methods were required in some cases[

In~atable dams have been constructed for a variety of purposes[ However\ they have not been
used to protect towns\ critical facilities\ or homes from ~oodwaters[ This study is part of an e}ort
to investigate the feasibility of such an application for in~atable dams and for gates supported by
pressurized bladders[
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